Live Data Ingest Programmer’s Guide

Integrated Test & Operations System
5 October 2006

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Introduction 1

Introduction

Applications in ITOS often need asynchronous notification of new telemetry data point
values. The database interface (DBIF) API within the ITOS DBIF library, libdbif, pro-
vides a low-level mechanism applications use to arrange for this notification. The mechanism
involves opening a DBIF "channel" (a FIFO; a.k.a. a named pipe) with dbTmOpenChan-
nel(), and setting a "tag" on each mnemonic of interest with dbTmTagSet(). The DBIF
then sends through the channel messages identifying a mnemonic and containing it’s new
value, which the application can read with dbTmReadChannel().

The Live Data Ingest (LDI) package provides a high-level, event-driven, and more object-
oriented interface on top of the DBIF tag-and-channel mechanism for X Window System
applications.!

The LDI functions according instructions contained in structures called HandlingSpecs,
detailed below, and there are only three function calls to the LDI: The first,
LiveDataIngest create_live_data_ingest(), creates the LiveDatalngest object
instance. The second, LiveDataIngest augment_1di(), can be used to add additional
handling specs to a LiveDatalngest object, and the third, int 1di_remove_hs() can be
used to remove handling specs from a LiveDatalngest instance..

The HandlingSpecs contains a list of telemetry mnemonics, specifies tagging and trig-
gering options and provides hooks for two callback function which the application may
provide. One callback is called each time a value message is received; the other is called
when the trigger criteria given by the HandlingSpecs is met.

1 Note that applications do not need to present a GUI to be X applications. The ITOS configuration
monitor, eqn_cfgmon, is an X program with no GUI — it simply uses the programming facilities provided
by X to make life easier for the programmer, and to give it access to the LDI!

April 2 2002

Chapter 1: DBIF Details 2

1 DBIF Details

To better understand what the LDI does and how it operates, let’s look at the relevant
parts of the underlying DBIF layer and the database itself.

The ITOS operational database (in a part called the current value table or CVT) stores
the value and some metadata for each telemetry mnemonic (that is, "measurand", a data
point that lives in the ITOS operational database). Each mnemonic has a fixed value type,
which can be signed or unsigned integers, floating-point, string, time, or date.

April 2 2002

Chapter 2: HandlingSpecs 3

2 HandlingSpecs

The handling specs structure contains the following elements:

TmnemGroup group;
A group of mnemonics to tag.

TagType tagtype;
The type of tag to set. If 0, trigger by timed interval.

Trigger trigger;
The triggering criteria.

Partial partial;
How to handle missing values.

int ques_qual_ok;
If true, it’s OK to use data with the QUALITY flag set.

void (*trigger_callback) (PerSpecData *);
The function to call when trigger criteria are met.

void *trigger_data;
Data passed as the third arugment to the trigger callback function.

void (*value_callback) (INDEX, TmValue *, void *);
The function to call when a new value has been received.

void *value_data;
Data passed as the third argument to the value callback.

SpecHandle handle;
An identifier for this HandlingSpec set by augment_1di().

Details follow.

2.1 group

This is the set of mnemonics in which we’re interested. The TmnemGroup is created from
a Null_Tmnem-terminated list of Tmnems using the DBIF call dbTmCreateGroup().

2.2 tagtype

The tag type concept is taken directly from the DBIF tag scheme. The idea is: In
tagging a mnemonic, we can specify by the TagType the circumstances under which the
DBIF should send us a value message.

The most useful distinction is: Send me a copy of the value whenever it is set; versus,
send me a copy of the value only when it is changed from it’s previous value.

From ‘dbif.h’:

April 2 2002

Chapter 2: HandlingSpecs 4

typedef int TagType; /* allowable tag types */

/* (was an enum, now masks) */

#define TmValChanged Ox1 /* send value when is changed */
#define TmValSame 0x2 /* send value when is not changed */
#define TmValSet 0x3 /* send value when is set */

#define TmFlagChanged 0x4 /* send value when flags changed */
#define TmFlagSame 0x8 /* send value when flags not changed*/

#define TmFlagSet Oxc /* send value when flags set */
#define TmPktTag 0x10 /* this is a packet tag */
TmValChanged

Send a value message only when the new value is different from the old value.

TmValSame
Send a value message only when the new value is the same as the old value. 1
can’t imagine why anybody would want to do that; it’s just here for complete-
ness.

TmValSet Send a value message anytime the value is set, regardless of whether or not it
matches the previous value.

TmFlagChanged
Send a value message only when the new flags are different from the old flags.

TmFlagSame
Send a value message only when the new flags are the same as the old flags.
Again, T can’t imagine why anybody would want to do that.

TmFlagSet
Send a value message anytime the flags are set, regardless of whether or not
they match the previous flags.

2.3 trigger

From ‘live_data_ingest.h’

typedef int TriggerType; /* trigger types */
#define TT_NULL O /* no trigger */

#define TT_TIME Ox1 /* trigger on timed interval */
#define TT_NORM 0x2 /* normal triggering */

#define TT_EOM O0x4 /* trigger on DBIF MSG_END_MARKER */
#define TT_MNEM 0x8 /* trigger on receipt of certain

mnemonics */
#define TT_PKT 0x10 /* trigger on receipt of certain
packets */

2.4 partial

From ‘live_data_ingest.h

April 2 2002

Chapter 2: HandlingSpecs 5

typedef enum PL NULL, /* unset */ PL_OK, /* leave missing values out */ PL_FILL,
/* fill missing values from CVT */ PL_DISCARD /* suppress trigger if vals missing */
Partial;

2.5 ques_qual_ok

If this element is zero, values flagged as having questionable data quality will not generate
value callbacks and be used to determine if the triggering criteria have been met.

2.6 trigger_callback

This element is a pointer to a function returning void (no return value) and taking a
single argument which is a pointer to a PerSpecData structure. This function is called when
the triggering criteria are met.

The PerSpecData structure encapsulates the data associated with the particular Han-
dlingSpec for which the trigger_callback is being called. For most purposes, it can be treated
as an opaque object from which you can access a list of PerMnemData structures, each of
which carries data related to a single mnemonic called for in the HandlingSpec.

Use the macro FIRST_PMD() to get the first PerMnemData structure in the list, and
NEXT_PMD() to get subsequent entries in the list. NEXT_PMD() will return NULL when it
reaches the end of the list.

The PerMnemData structure contains the following elements:

INDEX idx;
index in IngestData.mnem list

Tmnem mne;
mnemonic’s DBIF handle

TmInfo info;
mnemonic’s DBIF information

TmValue tmval;
mnemonic’s DBIF value

TmTag tag;
mnemonic’s DBIF tag, if needed

PerSpecDatalink *hs_list;
list of handling specs which reference this mnemonic

For most programmers, only the tmval field containing the mnemonic’s value will be of
use.

For details on the PerSpecData structure, See Section 2.6.1 [per_spec_data)], page 6.

April 2 2002

Chapter 2: HandlingSpecs 6

2.6.1 PerSpecData Strucutre

From ‘live_data_ingest.h”

/* Data for each handling spec, including the list of mnemonics
referenced by the spec. A pointer to one of these is passed to the
trigger_callback function. The _PMD macros following may be used
to iterate through each PerMnemData in the "mnem_list". */

struct per_spec_data

HandlingSpecs hs; /* data handling specifications */
PerMnemDatalink *mnem_list; /* list of mnemonic data for spec */
IngestData *1di; /* pointer back to containing LDI */
PerMnemDatalink *pmdl; /* supports FIRST, NEXT macros below*/

.
b

#define 1di_psd_1di(psd) ((psd)->1di)
#define FIRST_PMD(psd) ((psd)->pmdl = (psd)->mnem_list, (psd)->pmdl->pmd)
#define NEXT_PMD(psd) ((psd)->pmdl = (psd)->pmdl->next, (psd)->pmdl->pmd)

/* A linked list of pointers to PerMnemData.

There is one of these lists in each PerSpecData structure giving
the list of mnemonics referenced by the spec. For each element in
such a list, there is a one-to-one correspondence to a
PerSpecDatalink in pmd->hs_list. */

struct per_mnem_data_link

PerMnemData *pmd; /* pointer to associated mnem data */
PerMnemDatalink *next; /# link to next mmnemonic data ptr */
PerSpecMnemData *psmd; /* pointer to per-spec mnem data */

2.7 trigger_data

The trigger_data element is a pointer to data which the creator of the HandlingSpec
wants to make available to the value_callback function. Currently it has to be accessed
through the callback’s PerSpecData * argument, ->hs.trigger_data.

2.8 value_callback
This element is a pointer to a function returning void (no return value) and taking a
three arguments with the following types:

INDEX the array index for the mnemonic associated with the value in the TmnemGroup
given to the handling spec.

TmValue * a pointer to the mnemonic’s value.

April 2 2002

Chapter 2: HandlingSpecs 7

void * The value_data included in the HandlingSpec.

2.9 value_data

This element is a pointer to data which the creator of the HandlingSpec wants passed
to the value_callback function.

2.10 handle

This element is set by augment_1di() and create_live_data_ingest() in the
HandlingSpecs structure to which they are passed a pointer. It must be saved and passed
to 1di_remove_hs () to remove this HandlingSpecs from the LDI.

April 2 2002

Chapter 3: create_live_data_ingest 8

3 create_live_data_ingest

Syntax

LiveDataIngest create_live_data_ingest(XtAppContext context,
TmChan channel, HandlingSpecs *hs, void (*errcb)(int, char *, ...))

Discussion

This function creates an instance of the Live Data Ingest (LDI). The LDI is intended
to work within standard Xt-based applications, so the first argument, context, is the Xt
application context.

The channel argument is a DBIF channel created by dbTmOpenChannel () or NULL. If
it’s not NULL, this is the DBIF channel which should be used to receive telemetry values if
the HandlingSpecs trigger_type element is not TT_TIME. If it is NULL and a channel is
needed, the LDI will open one automatically. This argument usually can be set to NULL,
but is provided for cases where the application already has a channel open.

The hs argument is a pointer to the first (or only) set of handling specs for this LDI.
This argument also may be NULL, in which case a the first spec, like any others, must be
added with augment_1di.

The errorb argument is for passing an error callback function to the LDI. If non-NULL,
this should be a pointer to a function with the signature:

void errfn(int status, char *format, ...)

If status is zero, the message is informational, not really an error; if it is less than zero,
it is an error; and if it is greater than zero, it is a warning. The format is an EvtMsg-style
format string.

The return value is the LDI instance which must be passed to augment_1di() and
1di_remove_hs().

April 2 2002

Chapter 4: augment_ldi 9

4 augment_ldi

Syntax

LiveDataIngest augment_ldi(LiveDataIngest 1di, HandlingSpecs *hs)

Discussion

This function adds the HandlingSpecs hs to the existing LiveDataIngest instance Idi.
It returns it’s first argument or NULL on errors.

April 2 2002

Chapter 5: 1di_remove_hs 10

5 ldi_remove_hs

Syntax

int 1di_remove_hs(LiveDataIngest 1di, SpecHandle handle)

This function removes the HandlingSpecs given by handle from the LiveDataIngest
instance Idi. The handle is a field in the Hand1lingSpecs set by augment_1di () and create_
live_data_ingest() in the HandlingSpecs structure to which they are passed a pointer.

The function returns a non-zero value on errors.

April 2 2002

Chapter 6: Internal Details 11

6 Internal Details

The following is an attempt to illustrate the interlocking nature of the two lists in the
LDI: the handling specification list, hs_list, and the mnemonic list, mmem_list.

PSDL* hs_list

LDI
PMDL* mnem_list

PMD* pmd ------ +
PSMD* psmd ------|-——|---- +
PMDL* next --+ |
—————————— | |
v
PSMD* psmd
—————————— PSMD

I

I

I

I

[

|

I

I

I

I

I

I

I

| INDEX spec_idx
| int recd
I
I
I
I
I
I
I
I
I
I
[
I
I
I

INDEX idx

Tmnem mne

TmInfo info

TmValue tmval

TmTag tag

PSDL* hs_list
PSD* psd -————-—-—-————--- +
PSMD* psmd —--------—————-—————- +
PSDL* next —--+

As shown, each element in the hs_list basically just contains a PerSpecData structure.
This contains the HandlingSpec and a list of mnemonics reference by the spec. Each element

April 2 2002

Chapter 6: Internal Details 12

in the mnemonic list, mmem_list, contains a pointer to an entry in the LDI’s mnemonic_list,
and a pointer to a PerSpecMnemData structure. This latter structure is used to keep track
of what mnemonics have been received for this spec, and how each mnemonic is identified
relative to the spec.

Each element in the LDI’s mnemonic list, mnem_list, contains all data pertinent
to a mnemonic and a list of handling specifications which refer to the mnemonic. The
mnemonic’s handling spec list has the same structure as the LDI’s list of all handling
specs.

There are two views into the mnemonic data: the data ingest view and the triggering
view. In the former, per-mnemonic data is layed out in a list which can be indexed directly
by a dbif tag marker. This is exactly what happens when tagged data arrives. In the
triggering view, each handling spec has to be examined to see if it’s triggering criterion has
been met. For this purpose, per-mnemonic data is organized into a linked list with each
item containing data for one handling spec.

struct 1di_internal data

int num_hs
number of handling specs

PerSpecDataLink *hs_list
linked list of handling spec data

int num_mnems
count of unique mnemonics in 1di

PerMnemData **mnem_list
array of per-mnemonic data

TmChan chan
DBIF channel for data input

Timer *timers
Xt timer ID for interval trigger

XtAppContext xt_app_context
Xt application context

void (*error_cb)(int, char *, ...)
callback function for errors

April 2 2002

